Procédés et mécanique aux petites échelles PROMETHEE
Micro-objets déformables sous forçage hydrodynamique
Microfluidique et Procédés
Organisation des écoulements aux petites échelles
Séparations membranaires
suite...
Présentation
L’équipe PROcédés et MEcanique aux petiTes écHEllEs (PROMETHEE) développe des compétences marquées relevant aussi bien de la mécanique des milieux continus que du génie des procédés tout en combinant approche expérimentale et développement de théories et de modèles. L’originalité des études menées se décline selon plusieurs spécificités :
Echelle micro-nano d’observation et d’analyse qui évacue les problématiques liées à la turbulence (régime de Stokes) mais nécessite de considérer des aspects aux frontières de la discipline ;
Rôle prédominant des interfaces : interactions avec les parois solides à l’échelle nano (nano-tubes), interaction fluide-structure avec des membranes fluides ou polymérisée à l’échelle méso ;
Connexion avec les fluides complexes, la matière molle et les systèmes biologiques.
Sur le thème de la micro- et nano-fluidique, les objets d’étude, physico-chimiques (gouttes, capsules,…) et biologiques (vésicules, globules rouges,…), comprennent aussi les procédés intensifiés d’encapsulation et de vectorisation par microréacteur, thèmes en plein essor. L’équipe développe également des outils de caractérisation de l’organisation aux petites échelles comme le développement de simulations numériques pour rendre compte de la ségrégation obtenue au sein de milieux granulaires et la mise au point de méthode chimique de caractérisation des effets de micromélange (mélange à l’échelle moléculaire). A cela s’ajoute une activité de caractérisation et modélisation thermodynamique de milieux complexes.
Les outils numériques développés et mis en œuvre sont variés : intégrale de frontière, éléments finis, immersed boundary method, méthode Lattice Boltzman…
Julian Wailliez, Paul Regazzi, Anniina Salonen, Paul G Chen, Marc Jaeger, et al.. Drop deformation in a planar elongational flow: impact of surfactant dynamics. Soft Matter, 2024, 20 (44), pp.8793-8803. ⟨10.1039/D4SM00642A⟩. ⟨hal-04740537v2⟩ Plus de détails...
Drops in extensional flow undergo a deformation, which is primarily fixed by a balance between their surface tension and the viscous stress. This deformation, predicted and measured by Taylor on millimetric drops, is expected to be affected by the presence of surfactants but has never been measured systematically. We provide a controlled experiment allowing to measure this deformation as a function of the drop size and of the shear stress for different surfactants at varying concentrations. Our observation is that the deformation predicted by Taylor is recovered at zero and high surfactant concentration, whereas it is smaller at concentrations close to the critical micellar concentration. This is in contradiction with the existing analytical models. We develop a new analytical model, taking into account the surfactant dynamics. The model predicts a transition between a deformation similar to the one of a pure liquid and a smaller one. We show that the transition is driven by a parameter K_L , which compares adsorption and desorption dynamics. Finally, the concentration C* , at which we observe this transition in the extensional flow is in good agreement with the one predicted by independent measurement of K_L .
Julian Wailliez, Paul Regazzi, Anniina Salonen, Paul G Chen, Marc Jaeger, et al.. Drop deformation in a planar elongational flow: impact of surfactant dynamics. Soft Matter, 2024, 20 (44), pp.8793-8803. ⟨10.1039/D4SM00642A⟩. ⟨hal-04740537v2⟩
Q. Mao, Umberto d'Ortona, J. Favier. Hydrodynamic coupling of a cilia–mucus system in Herschel–Bulkley flows. Journal of Fluid Mechanics, 2024, 994, pp.A8. ⟨10.1017/jfm.2024.600⟩. ⟨hal-04735292⟩ Plus de détails...
The yield stress and shear thinning properties of mucus are identified as critical for ciliary coordination and mucus transport in human airways. We use here numerical simulations to explore the hydrodynamic coupling of cilia and mucus with these two properties using the Herschel–Bulkley model, in a lattice Boltzmann solver for the fluid flow. Three mucus flow regimes, i.e. a poorly organized regime, a swirly regime, and a fully unidirectional regime, are observed and analysed by parametric studies. We systematically investigate the effects of ciliary density, interaction length, Bingham number and flow index on the mucus flow regime formation. The underlying mechanism of the regime formation is analysed in detail by examining the variation of two physical quantities (polarization and integral length) and the evolution of the flow velocity, viscosity and shear-rate fields. Mucus viscosity is found to be the dominant parameter influencing the regime formation when enhancing the yield stress and shear thinning properties. The present model is able to reproduce the solid body rotation observed in experiments (Loiseau et al. , Nat. Phys. , vol. 16, 2020, pp. 1158–1164). A more precise prediction can be achieved by incorporating non-Newtonian properties into the modelling of mucus as proposed by Gsell et al. ( Sci. Rep. , vol. 10, 2020, 8405).
Q. Mao, Umberto d'Ortona, J. Favier. Hydrodynamic coupling of a cilia–mucus system in Herschel–Bulkley flows. Journal of Fluid Mechanics, 2024, 994, pp.A8. ⟨10.1017/jfm.2024.600⟩. ⟨hal-04735292⟩
Umberto d'Ortona, Richard Lueptow, Nathalie Thomas. Origin of granular axial segregation bands in a rotating tumbler: An interface-mixing driven Rayleigh-Taylor instability. Physical Review Research, 2024, 6 (3), pp.L032038. ⟨10.1103/PhysRevResearch.6.L032038⟩. ⟨hal-04734506⟩ Plus de détails...
The origin of large and small particle axial bands in long rotating tumblers is a long-standing question. Using DEM simulations, we show that this axial segregation is due to a Rayleigh-Taylor instability which is characterized by the fact that the density of a granular medium increases with mixing and decreases with segregation. For initially mixed particles, segregation and collisional diffusion in the flowing layer balance and lead to a three-layer system, with a layer of large particles over a layer of small particles, and, interposed between these layers, a layer of more densely packed mixed particles. The higher density mixed particle layer over the lower density small particle layer induces a Rayleigh-Taylor instability, evident as waviness in the interface between the layers. The waviness destabilizes into ascending plumes of small particles and descending plumes of mixed particles with large particles enriched near the surface, which become evident as small and large particle bands visible at the free surface. Rolls driven by segregation at the tilted interface between plumes maintain the pattern of frozen plumes. Published by the American Physical Society 2024
Umberto d'Ortona, Richard Lueptow, Nathalie Thomas. Origin of granular axial segregation bands in a rotating tumbler: An interface-mixing driven Rayleigh-Taylor instability. Physical Review Research, 2024, 6 (3), pp.L032038. ⟨10.1103/PhysRevResearch.6.L032038⟩. ⟨hal-04734506⟩
Nathalie Fraysse, Umberto d'Ortona, Nathalie Thomas. Interaction between two large particles in a dry granular shear flow. Physical Review E , 2024, 109 (6), pp.064903. ⟨10.1103/PhysRevE.109.064903⟩. ⟨hal-03571280v3⟩ Plus de détails...
The interaction between two large spherical particles, called intruders, in a dry granular flow down an incline is brought to light and studied experimentally and numerically. Several parameters are varied, namely the size ratio between the intruders and the small flowing particles, the thickness of the granular flow, the incline slope and roughness, and the densities of the intruders with respect to the small-particle density. In all cases, intruders get aligned with the flow. A thorough para- metric study shows that a transition occurs between attractive and repulsive regimes of interaction: at steady-state, intruders either flow at a defined longitudinal distance, which may be zero with intruders in contact, or stand as far apart as possible. The mean longitudinal and vertical distances between the intruders are found to be tightly linked, with all points plotting the pairs on a single, master curve. The wake and shear effects are shown to control the relative position of the intruders. They may be modulated due to the weight and buoyancy of the intruders, and to local modifications of the collisions between intruders and small flowing particles because of the proximity of the incline bottom or the flow surface.
Nathalie Fraysse, Umberto d'Ortona, Nathalie Thomas. Interaction between two large particles in a dry granular shear flow. Physical Review E , 2024, 109 (6), pp.064903. ⟨10.1103/PhysRevE.109.064903⟩. ⟨hal-03571280v3⟩
V Puthumana, Paul G. Chen, M Leonetti, R Lasserre, M Jaeger. Assessment of coupled bilayer-cytoskeleton modelling strategy for red blood cell dynamics in flow. Journal of Fluid Mechanics, 2024, 979, pp.A44. ⟨10.1017/jfm.2023.1092⟩. ⟨hal-04409136⟩ Plus de détails...
The red blood cell (RBC) membrane is composed of a lipid bilayer and a cytoskeleton interconnected by protein junction complexes, allowing for potential sliding between the lipid bilayer and the cytoskeleton. Despite this biological reality, it is most often modelled as a single-layer model, a hyperelastic capsule or a fluid vesicle. Another approach involves incorporating the membrane's composite structure using double layers, where one layer represents the lipid bilayer and the other represents the cytoskeleton. In this paper, we computationally assess the various modelling strategies by analysing RBC behaviour in extensional flow and four distinct regimes that simulate RBC dynamics in shear flow. The proposed double-layer strategies, such as the vesicle--capsule and capsule--capsule models, account for the fluidity and surface incompressibility of the lipid bilayer in different ways. Our findings demonstrate that introducing sliding between the layers offers the cytoskeleton a considerable degree of freedom to alleviate its elastic stresses, resulting in a significant increase in RBC elongation. Surprisingly, our study reveals that the membrane modelling strategy for RBCs holds greater importance than the choice of the cytoskeleton's reference shape. These results highlight the inadequacy of considering mechanical properties alone and emphasise the need for careful integration of these properties. Furthermore, our findings fortuitously uncover a novel indicator for determining the appropriate stress-free shape of the cytoskeleton.
V Puthumana, Paul G. Chen, M Leonetti, R Lasserre, M Jaeger. Assessment of coupled bilayer-cytoskeleton modelling strategy for red blood cell dynamics in flow. Journal of Fluid Mechanics, 2024, 979, pp.A44. ⟨10.1017/jfm.2023.1092⟩. ⟨hal-04409136⟩
Mardi 17 Décembre 2019
- Eco-design of a Dry Cleaning Machine by Integration of a Membrane Process for Solvent Dehydration / Soutenance de thèse Oleksandr DIMITROV
Doctorant : Oleksandr DIMITROV
Date de la soutenance : le 17 décembre 2019 à 10h30, Amphi 3, Centrale Marseille.
Jacques JOSE Professeur EM, Univ Lyon 1, Lyon Invité
Alfred TESTA Dirigéant, Innovaclean, Géménos Invité
Vendredi 5 Juillet 2019
- Modélisation numérique de la dynamique de particules molles en microcanaux / Soutenance de thèse de Jinming LYU
Doctorant : Jinming LYU
Date de la soutenance : Vendredi 5 Juillet 2019 à 14h00, Amphi 3A, Centrale Marseille
Résumé de la thèse :
Une vésicule est un système modèle utilisé pour comprendre le comportement dynamique en écoulement d’une particule molle fermée telle qu’un globule rouge. La membrane bicouche lipidique inextensible d’une vésicule admet une résistance d’élasticité en flexion. Lorsque dégonflée, c’est-à-dire pour un grand rapport surface sur volume, une vésicule présente des changements de formes remarquables. Des progrès significatifs ont été réalisés au cours des dernières décennies dans la compréhension de leur dynamique en milieu infini. Ce manuscrit s’intéresse à la transition de formes et à la migration latérale d’une vésicule dans des écoulements confinés. L’approche est numérique, basée sur une méthode aux éléments finis de frontière (BEM) isogéométrique. Partant d’une version existante pour les écoulements de Stokes non confiné, un code original est développé pour prendre en compte les parois de microcanaux de section transversale arbitraire. L’essentiel des études porte sur la dynamique d’une vésicule transportée par un écoulement de Poiseuille dans une conduite de section circulaire. Tout d’abord, nous examinons les formes typiques des vésicules, les différents modes de migration latérale et la structure de l’écoulement des lipides dans la membrane, en fonction des trois paramètres sans dimension caractéristiques : le volume réduit, le confinement et le nombre capillaire (de flexion). Les transitions de forme et le diagramme de phase de formes stables pour plusieurs volumes réduits sont obtenus dans l’espace (confinement, nombre capillaire). Ils montrent une extension de l’ensemble des morphologies de la vésicule. L’interaction complexe entre la paroi du tube, les contraintes hydrodynamiques et l’élasticité de flexion de la membrane conduit à une dynamique bien plus riche. Nous étudions ensuite, via une version axisymétrique du modèle, le comportement de la vésicule lorsque des conditions de confinement deviennent sévères et imposent des formes de vésicule axisymétriques. Un accent particulier est mis sur la prédiction de la mobilité de la vésicule et de la perte de charge additionnelle induite par la présence de la vésicule. Cette dernière est importante pour comprendre la rhéologie d’une suspension diluée. De plus, sur la base des résultats numériques du comportement proche du confinement maximal, nous établissons plusieurs lois d’échelle portant sur la vitesse de la vésicule et sa longueur, ainsi que sur l’épaisseur du film de lubrification. Enfin, nous présentons un modèle hybride BEM–coarse-graining permettant d’adjoindre un cytosquelette à une vésicule pour étendre nos études au cas des globules rouges. La modélisation coarse-graining du cytosquelette repose sur un réseau de ressorts identifié à l’ensemble des arêtes du maillage d’éléments finis de la membrane de la vésicule. Les résultats numériques montrent que ce modèle à deux composants vésicule–cytosquelette est capable d’extraire les propriétés mécaniques des globules rouges et de prédire sa dynamique dans les écoulements de fluide.
Jury
Annie VIALLAT DR CNRS, CINaM, Marseille Présidente
Chaouqi MISBAH DR CNRS, LIPhy, Grenoble Rapporteur
Franck NICOUD PR Univ. de Montpellier, Montpellier Rapporteur
Marc LEONETTI CR CNRS, LRP, Grenoble Examinateur
Marc JAEGER PR ECM, Marseille Directeur de thèse
Paul G. CHEN CR CNRS, M2P2, Marseille Co-Directeur de thèse